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Abstract

The growth of the boundary layer flow of a viscous and incompressible micropolar fluid started impulsively from rest near the rear
stagnation point of a two-dimensional plane surface is studied theoretically. The transformed non-similar boundary-layer equations are
solved numerically using a very efficient finite-difference method known as Keller-box method. This method may present well-behaved
solutions for the transient (small time) solution up to the separation boundary layer flow. Numerical results are given for the reduced velocity
and microrotation profiles, as well as for the skin friction coefficient when the material parakhégdes the valueX = 0 (Newtonian
fluid), 0.5, 1, 1.1, 1.5, 2, 2.5 and 3 with the boundary condition for microrotatierD (strong concentration of microelements) and 1/2
(weak concentration of microelements), respectively. Important features of these flow characteristics are shown on graphs and in tables.
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1. Introduction two-dimensional stagnation point flow are associated with
the names of Hiemenz [2] and Homann [3], respectively. Un-
Exact solutions of the Navier-Stokes equations are ex- steady stagnation point flows abound. Proudman and John-
ceptionally rare in fluid mechanics because of the analytic son [4], and Robins and Howarth [5] have studied the growth
difficulties associated with non-linear boundary-value prob- of the boundary layer at a two-dimensional rear stagnation
lems. Exact solutions are important not only in their own point of a cylinder which is set in motion impulsively with
right as solutions of particular flows, but also serve as ac- a constant velocity normal to the surface of the plane, while
curacy checks for numerical solutions. One of the primary Smith [6] generalized this problem by allowing the plane to
difficulties rests in the fact that non-linear problems do not have a general velocity (r), whereV(z) is monotonic in
admit a superposition principle, thereby ruling out the build- time. Howarth [7,8] has extended the work of Proudman and
ing up of complicated solutions from simple ones. Wang Johnson [4], and Robins and Howarth [5] on boundary layer
[1] noticed that these solutions are sometimes found as agrowth at a two-dimensional rear stagnation point to the ax-
superposition of fundamental exact solutions that lead, by jsymmetric (e.g., the rear of a sphere) and three-dimensional
superposition of coordinate variables, the non-linear cou- rear stagnation points. Further, Katagiri [9] has considered
pled ordinary differential equations. Exact solutions of the the unsteady boundary-layer flow at the rear stagnation point
Navier—Stokes equations are, for example, those of steadyin the presence of a uniform magnetic field. Finally, we men-
and unsteady flows near a stagnation point. Stagnation pointjon, the paper by Burdé [10] that presents an interesting solu-
flows can either be_viscogs or inviscid (n(_)n—visc_:oUS), steady tjon of the unsteady stagnation point flow that corresponds to
or unsteady, two-dimensional or three-dimensional, normal ey erse flow with time-dependent blowing through a porous
or oblique, and forward or reverse. The classic problems of {5t syrface.
The aim of the present paper is to study the unsteady
~* Corresponding author. boundary layer flow of a micropolar fluid, which is started
E-mail address: nsarah@mel.fs.utm.my (N. Amin). impulsively in motion with a constant velocity from rest near
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Nomenclature
a CONSEANS . .. ..o oy spin gradient viscosity ............. kgst
Cy local skin friction coefficients n pseudo-similarity variable
f reduced stream function K VOrtex Viscosity .. ............... kg t.s1
g reduced microrotation m VISCOSIY ... vevieeeieiee k1.5t
j microinertiadensity ..................... m v kinematic viscosity .................. 1
K material parameter o density ... kg3
n ratio of the microrotation vector componentand t non-dimensional time
the fluid skin friction at the wall Tw wall skin friction
N component of the microrotation vector normal stream function
ox—yplane..............ooeoiiii, -$ Subscripts
t tme ..o s
u,v velocity components alongandy axes ms™! e boundary layer edge condition
ue(x) free streamvelocity................... .gnt w wall condition
x,y  Cartesian coordinates along the wall and normal far field condition
toit, respectively ........... ...l M Quperscript
Greek symbols ! differentiation with respect tg

the rear stagnation point of an infinite plane wall. A detailed Such applications include the extrusion of polymer fluids,
numerical solution of the transformed equations has beensolidification of liquid crystals, cooling of a metallic plate
obtained for some values of the material parameter in a bath, animal bloods, exotic lubricants and colloidal and
and for the boundary condition for microrotatien= 0 suspension solutions, for example, for which the classical
(strong concentration of microelements) ang 1/2 (weak Navier—Stokes theory is inadequate. Eringen [12—-14] was
concentration of microelements), respectively, using the the first to propose the theory of micropolar fluids in which
Keller-box method. This solution refers to the velocity and the microscopic effects arising from the local structure and
microrotation fields as well as to the skin friction coefficient micromotions of the fluid elements are taken into account
in the region up to separation point of the boundary layer. and much work has been done since then on these fluids.
The results show that there is a smooth transition from

the small time solution (unsteady initial flow) up to the

boundary layer separation point. To our best knowledge this 2. Basic equations

problem has not been studied before. However, Kumari and

Nath [11] have considered the unsteady two-dimensional ~We shall consider the development of the two-dimen-
and axisymmetric stagnation point boundary layer flows of sional boundary layer flow of a viscous and incompressible
micropolar fluids with mass transfer near a forward plane micropolar fluid near the rear stagnation point of an infinite
stagnation point when the free stream velocity and wall Plane wall. The fluid, which occupies a semi-infinite domain
temperature vary with time. The governing semi-similar bounded by an infinite plane and remains in rest for time
partial differential equations were solved numerically using ¢ < 0, starts to move impulsively away from the wall at
the quasilinear implicit finite-difference scheme. Though = 0. In our analysis, rectangular Cartesian coordinates
the stagnation point problem is a classical one and the (x.y) are used, in whichr and y are considered as the
main purpose of the present study is at least to know coordinates along the wall and normal to it, respectively. The
theoretically the nature of the unsteady boundary layer flow boundary layer equations governing the unsteady flow of a
of micropolar fluid near a stagnation point yet this type of micropolar fluid with constant physical properties are (see
problem may arise in the field of aeronautics and submarine R€€s and Bassom [15]),

navigation. Fluids containing extremely small amount of 3,  dv

polymeric additives indicate an appreciable reduction in skin 3 5 =0 1)
friction near a rigid body and also polymer concentration

2
reduces the frictional drag, a situation which may be of o +ua_u +Ua_u =ue% + (“JFK)S_’; KON (2)
interest to aeronautical engineers and naval architects who?’ dx dy dx pJays pdy

are concerned in the drag reduction of the airplane and ship. ./(dN =~ dN = 9N
Studies of micropolar fluids have received considerable < <W + ”E + Ay ) = _K<

attention during the last few years due to their important 3; aj aj

applications in a number of processes that occur in industry. + P + U@ =0 (4)

u 92N
2N + — —— (3
+ay)+yay2 @)
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. 3 2 2
whereu andv are the velocity components alongand y 1+ K)ﬂ + znﬂ _2r 97 f
axes,N is the component of the microrotation vector normal an3 an? atan
to thex—y plane,p is the densityu is the absolute viscosity, dg ) af 2 32f
« is the vortex viscosityy is the spin-gradient viscosity,is + K@ - {1 - <3_n) + fa—nz } =0 9)
the microinertia density, ang. (x) is the free stream velocity KN 52 5 5
given by (Hi)a_ng +2na—i+2g—2t£
Me(-x):a.x (5) 8g 8f 82f
2 _

with a (< 0) being a constant. We follow the work of many -t {fa_n B ga_n B K(Zg * 3—772)} =0 (10)
recent authors by assuming thats given by (see Rees and and the boundary conditions (7) transform to
Pop [16]), ,

. a ad
y=(r+k/2)j (6) f:%:O, g:—na—n]; onn=0 (11a)
and that; is a constant and therefore it shall be set equal to 3¢
a reference valuejp (say); consequently Eq. (4) is trivially 3. = 1, g—>0 asp—>o0 (11b)
satisfied.

whereK = «/u is called material parameter.
The physical quantity of practical importance in this
problem is the local skin friction coefficier s, which is

The remaining three equations are to be solved subject to
the boundary and initial conditions:

t <0:u(t,x,y)=0, v(t,x,y)=0 defined as
T
N(t,x,y)=0 (7a) Cr= — (12)
: pxy/val®
t=0:u(t,x,00) =u,(t, x), N(,x,00)=0 (7b)
Su wherer,, is the wall skin friction given by
t>0u=v=0, N:—na— aty=0 (7¢c) .
y
= — +«N 13
u—>u,(x), N—0 asy— oo (7d) fw |:<M+K)8y T i|y:0 (13)
wheren is a constant and & n < 1. The casen = 0, Using variables (8) and the boundary condition (11a)gfor
which indicatesV = 0 at the wall, represents concentrated we get
particle flows in which the microelements close to the 92f
wall surface are unable to rotate (Jena and Mathur [17]). Cy = =(1+ (1—n)K)(W> (14)
This case is also known as the strong concentration of t "/ 9=0

microelements (see Guram and Smith [18]). The case The initial velocity and microrotation profileg’(n) and

n = 1/2 indicates the vanishing of anti-symmetric part of g() at + = 0 are obtained from the following ordinary
the stress tensor and denotes weak concentration (Ahmaddifferential equations

[19]) of microelements. The case= 1, as suggested by

Peddieson [20], is used for the modelling of turbulent L+ K)f" +2nf" + Kg'=0 (15)
boundary layer flows. We shall consider here both the cases 14 f)gu 4+ 2n¢ +2¢=0 (16)
n =0 andn = 1/2, respectively. It can, however, easily 2

be shown that for = 1/2 the governing equations can be gypject to the boundary conditions

reduced to the classical problem of unsteady boundary layer

flow of a viscous and incompressible fluid (Newtonian fluid) f(0) = f'(0) =0, g(0)=—nf"(0) (17a)

near the rear stagnation point of a plane wall. ff—1, g—0 asp— oo (17b)
The above equations do not admit similarity solutions

and numerical or perturbation methods are needed. We

shall, however, use here a numerical method with the

initial conditions obtained from an analytical solution. The n

procedure depends on defining a non-dimensional streamf (n) = 1—erfc<(1+ K)1/2>

function f, a non-dimensional microrotation functigrand

do-similarity variable given b 2+ K\
a pseudo-similarity varia ven 2n
p y 2 given by + (2+21<)

where primes denote differentiation with respecytd@hese
equations have the following closed form analytical solution

y=2vtaxf(t.n),  N=z=g(t.) 1/27-1
= viax . 5 = l} B
1 2«/vtg ! X [1=2n+2n 2+ K
y o ST (8) 2+2K
=—, T=2|a
" 2\/vt n 1/2
i . x erfel ————- | —erfc| ( -—— n
The outcome of this transformation is that Eqgs. (1)—(3) 1+ K)Y 2+ K

become (18)
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2n 2+ K 172
=——QA+K)Y1-2m+2
L [T =L

2772
X exp| _2+K

Further, we notice that fot = 1/2 (weak concentration
of microelements), we can take

(19)

192f
=—-— 20
292 (20)
and equations (9) and (10) reduce to the following equation
3f Pf ) 0°f
1 2n
( * 2)3 37 T ooy
3 32
—f2{1—<—f) +f—f}_0 (21)
on
subject to the boundary conditions
a
f:—f=0 onn=0 (22a)
an
a
8_f —1 asp— oo (22b)
n

If we introduce now the variables

12 —1/2
r=(1+3) Jei a=(1+3) 0 @

then Eqg. (21) becomes

33f a2f 32f
ans3 372 aTon

e (5) + 75t} -0

subject to the boundary conditions (22) ﬁér Now, the skin
friction coefficientC ; given by (14) becomes

1 K\Y?/92f
(+2) ()
T 2 377 T’]=0

3. Resultsand discussion

v272 L o

2f

(24)

Cy (25)
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Table 1
The non-dimensional time-(at) elapsed before separation takes place for
n = 0 (strong concentration of microelements)

K —(at)

0.0 0643793(Present resuit
0.6439(Katagiri [9])
0.643 (Hayasi [23)

0.5 0669430

1.0 Q794283

1.1 Q875479

1.2 00

occurs have been obtained for the following values of the
material parametek = 0.0 (Newtonian fluid), 0.5, 1.0, 1.1,
1.5, 2.0, 2.5 and 3.0 with the boundary conditions for mi-
crorotationn = 0 andn = 1/2, respectively. Values of the
non-dimensional time-(at) elapsed before separation oc-
curs are given in Table 1 for the caserof O (strong con-
centration of microelements). The values obtained by Kata-
giri [9] by using the difference-differential method as pro-
posed by Hartree and Womersley [22], and by Hayasi [23]
based on the semi-similar solution method for a Newtonian
fluid (K = 0) are also included in this table. We can see that
the agreement between the present results and those of Kata-
giri [9] and Hayasi [23] are very good. In the difference-
differential method, the non-linear partial differential equa-
tions (9) and (10) subject to the boundary conditions (11) are
approximated to a system of ordinary differential equations
by replacing the partial derivatives with respect to timiey
finite differences, for examples, by using Gregory—Newton
backward difference with a uniform step size However,
we have solved these equations directly using the Keller-box
implicit finite-difference scheme. Finally, one can see from
Table 1 that the non-dimensional time elapsed before sep-
aration takes place is higher for a micropolar fluid £ 0)
than for a Newtonian fluidK = 0). This happens because in
the caser = 0 (strong concentration of microelements), the
microelements close to the wall surface are unable to rotate.
The variation of the skin friction coefficienC; with
—(at) is shown for some values of the paramekein Fig. 1
for n = 0 (strong concentration of microelements) and in
Fig. 2 forn = 1/2 (weak concentration of microelements),

Egs. (9) and (10) subject to the boundary conditions (11) respectively. It is seen that the separation of the boundary

with n = 0 (strong concentration of microelements) and
n = 1/2 (weak concentration of microelements) were solved
numerically using an implicit finite-difference method that
is known as the Keller-box method in conjunction with the

layer occurs with negative values of the skin friction irre-
spective of the type of boundary condition assumed for mi-
crorotationn =0 orn = 1/2. For the case of a strong con-
centration of microelements: (= 0), the separation takes

Newton’s linearization technique as described by Cebeci place near the value (at) = 0.6438 for a Newtonian fluid

and Bradshaw [21]. Here, we use the step sizes and
n of 0.02,7, = 10 and the convergent criteria is510~".

The numerical solution starts at the non-dimensional time,

7 = 0 with initial profiles as given by Egs. (18), (19) and
then proceed to larger value efuntil the boundary layer

(K =0) anditis delayed whek increases from zero up to

K < 1.1 as can be seen from Fig. 1. However, for> 1.2,

the numerical results suggest that separation does not begin
and it is completely inhibited. It is worth mentioning that it is
difficult to obtain an exact value &€ for which the separa-

separation occurs. Representative results for the skin fric-tion does not occur because the non-dimensional time before

tion coefficient, velocity and microrotation profiles, as well

separation occurs becomes infinitely largekaapproaches

as for the non-dimensional time elapsed before separationa critical valuek . in the range 11 < K, < 1.2. For the case
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Fig. 1. The skin friction coefficient for various values &f whenn =0
(strong concentration of microelements). Fig. 3. The velocity profiles for the rear stagnation point wites: 0.5.
4
4
35 | - ;
09} i / 4
C, 3 ] " [
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.............. n="Y ak tration of
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Fig. 2. The skin friction coefficient for various values Kfwhenn = 1/2 y U
(weak concentration of microelements). L

) ) Fig. 4. The velocity profiles for the rear stagnation point wikes- 1.0.
of weak concentratiorn(= 1/2), on the other hand, Fig. 2

shows that the separation occurs for any valu&aoénd it )
takes place again near the valugar) = 0.6438. This can  forall values ofK’, n and—(ar) considered. As the values of

be also easily seen if we examine both Egs. (24) and (25).the material parametef increase, the boundary layer thick-
Further, we notice, as expected, that the skin friction coeffi- Ness also increases. However, for the same value of the para-
cient for the micropolar fluid is higher than that for the New- meterk, the thickness of the microrotation boundary layer
tonian fluid (K = 0) irrespective of the boundary conditions is larger than the thickness of the velocity boundary layer.

assumed for microrotation. But for the same values &, the velocity profiles are higher
The velocity and microrotation profiles as a function of forn =1/2than forn = 0 as can be seen from Figs. 3 and 4.
time —(at) are shown in Figs. 3-8 fot = 0 (strong con- Further, it should be mentioned that for the present prob-

centration of microelements) amnd= 1/2 (weak concentra-  lem, i.e., the unsteady flow near the rear stagnation point,
tion of microelements), and some values of the paraniéter  the microrotation profiles shown in Figs. 5 and 7 are com-
The variabley./[a]/v = tn in place ofn has been used. pletely positive fom = 0, i.e., the rotation of the microele-
We can see that these profiles develop rapidly from rest asments is direct, they reach a maximum and then decrease to
—(at) increases from zero until the boundary layer separa- zero. However, the microrotation profiles shown in Figs. 6
tion takes place. However, it is important to notice that the and 8 forn = 1/2 are completely negative, which means that
transition from the unsteady initial flow up to the position the rotation of the microelements is indirect. Both these pro-
where boundary layer start to separate is completely smoothfiles initially decrease from maximum values at the wall to
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0.15 |
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0.1
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0.05 |
01

Fig. 5. The microrotation profiles for the rear stagnation point when Fig. 7. The microrotation profiles for the rear stagnation point when
K = 0.5 andn = 0 (strong concentration of microelements). K = 1.0 andn = 0 (strong concentration of microelements).

05 T T T T T 05

0.45
04 4 & 4

035 [

sl ~(at)=0.01, 0.04. 0.09, 0.16, 0.25. 0.36. 0.49, 0.64 o {aiy=0.01, 0.04.0.09, 0.16. 0.25. 0,36, 0.49, 0.64

025 |
02 L B 02
0.15
01 - 01 L

0.05

J d
L

Fig. 6. The microrotation profiles for the rear stagnation point when Fig. 8. The microrotation profiles for the rear stagnation point when
K = 0.5 andn = 1/2 (weak concentration of microelements). K =1.0 andn = 1/2 (weak concentration of microelements).

zero and then change the form reaching maximum values in-reported by Katagiri [9] and Hayasi [23]. An important

side the boundary layer and decrease to zero. This case doeesult of the present paper is that for the case of strong

not happen for the unsteady flow near the forward stagna-interaction ¢ = 0), the boundary layer separates from the

tion point of a plane surface, see Lok et al. [24]. Further, wall when the material parametdf lies in the range &

both Figs. 6 and 8 show that near the separation point thex < 1.2 and this separation delays &sincreases. But for

microrotation at the wall is zero. a micropolar fluid withK > 1.2 the boundary layer does
not separate at all. However, for= 1/2 the boundary-layer
separation takes place for all valuesiof From the analysis,

4. Conclusions we infer that the presence of microelements thoroughly
influences the characteristics features on this unsteady flow.

The Keller-box method has been very successfully used It is worth mentioning that similar behaviours were found

here for the unsteady boundary layer flow of a micropolar also by Katagiri [9,25] for the corresponding problems of

fluid near the rear stagnation point of an infinite plane wall. unsteady boundary layer flows of a Newtonian flukd-€ 0)

It has been shown that the obtained results agree very wellnear the rear and forward stagnation points on a plane wall in

with the previous studies for a Newtonian flui&@ = 0) the presence of a uniform applied magnetic field. The results
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