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Abstract

The growth of the boundary layer flow of a viscous and incompressible micropolar fluid started impulsively from rest near
stagnation point of a two-dimensional plane surface is studied theoretically. The transformed non-similar boundary-layer equ
solved numerically using a very efficient finite-difference method known as Keller-box method. This method may present well-
solutions for the transient (small time) solution up to the separation boundary layer flow. Numerical results are given for the reduce
and microrotation profiles, as well as for the skin friction coefficient when the material parameterK takes the valuesK = 0 (Newtonian
fluid), 0.5, 1, 1.1, 1.5, 2, 2.5 and 3 with the boundary condition for microrotationn= 0 (strong concentration of microelements) andn= 1/2
(weak concentration of microelements), respectively. Important features of these flow characteristics are shown on graphs and in
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Exact solutions of the Navier–Stokes equations are
ceptionally rare in fluid mechanics because of the ana
difficulties associated with non-linear boundary-value pr
lems. Exact solutions are important not only in their o
right as solutions of particular flows, but also serve as
curacy checks for numerical solutions. One of the prim
difficulties rests in the fact that non-linear problems do
admit a superposition principle, thereby ruling out the bu
ing up of complicated solutions from simple ones. Wa
[1] noticed that these solutions are sometimes found
superposition of fundamental exact solutions that lead
superposition of coordinate variables, the non-linear c
pled ordinary differential equations. Exact solutions of
Navier–Stokes equations are, for example, those of st
and unsteady flows near a stagnation point. Stagnation p
flows can either be viscous or inviscid (non-viscous), ste
or unsteady, two-dimensional or three-dimensional, nor
or oblique, and forward or reverse. The classic problem
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t

two-dimensional stagnation point flow are associated w
the names of Hiemenz [2] and Homann [3], respectively.
steady stagnation point flows abound. Proudman and J
son [4], and Robins and Howarth [5] have studied the gro
of the boundary layer at a two-dimensional rear stagna
point of a cylinder which is set in motion impulsively wit
a constant velocity normal to the surface of the plane, w
Smith [6] generalized this problem by allowing the plane
have a general velocityV (t), whereV (t) is monotonic in
time. Howarth [7,8] has extended the work of Proudman
Johnson [4], and Robins and Howarth [5] on boundary la
growth at a two-dimensional rear stagnation point to the
isymmetric (e.g., the rear of a sphere) and three-dimens
rear stagnation points. Further, Katagiri [9] has conside
the unsteady boundary-layer flow at the rear stagnation p
in the presence of a uniform magnetic field. Finally, we m
tion the paper by Burdé [10] that presents an interesting s
tion of the unsteady stagnation point flow that correspond
reverse flow with time-dependent blowing through a por
flat surface.

The aim of the present paper is to study the unste
boundary layer flow of a micropolar fluid, which is start
impulsively in motion with a constant velocity from rest ne
sevier SAS. All rights reserved.



996 Y.Y. Lok et al. / International Journal of Thermal Sciences 42 (2003) 995–1001
Nomenclature

a constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m−1

Cf local skin friction coefficients
f reduced stream function
g reduced microrotation
j microinertia density . . . . . . . . . . . . . . . . . . . . . m2

K material parameter
n ratio of the microrotation vector component and

the fluid skin friction at the wall
N component of the microrotation vector normal

to x − y plane . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u,v velocity components alongx andy axes m·s−1

ue(x) free stream velocity . . . . . . . . . . . . . . . . . . . m·s−1

x, y Cartesian coordinates along the wall and normal
to it, respectively . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

γ spin gradient viscosity . . . . . . . . . . . . . kg·m·s−1

η pseudo-similarity variable
κ vortex viscosity . . . . . . . . . . . . . . . . . kg·m−1·s−1

µ viscosity . . . . . . . . . . . . . . . . . . . . . . . kg·m−1·s−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

τ non-dimensional time
τw wall skin friction
ψ stream function

Subscripts

e boundary layer edge condition
w wall condition
∞ far field condition

Superscript
′ differentiation with respect toη
led
een

the
nd
nt

yer.
om

he
this
and
nal
of
ne
all

ilar
ing
gh
the
ow
ow
of
rine
of
kin
ion
of

who
ship
ble
ant
stry.

ds,
te
nd
ical
was
ich
and
unt
s.

en-
ible
ite

ain
ime
at
tes
e

The
of a
see
the rear stagnation point of an infinite plane wall. A detai
numerical solution of the transformed equations has b
obtained for some values of the material parameterK

and for the boundary condition for microrotationn = 0
(strong concentration of microelements) andn= 1/2 (weak
concentration of microelements), respectively, using
Keller-box method. This solution refers to the velocity a
microrotation fields as well as to the skin friction coefficie
in the region up to separation point of the boundary la
The results show that there is a smooth transition fr
the small time solution (unsteady initial flow) up to t
boundary layer separation point. To our best knowledge
problem has not been studied before. However, Kumari
Nath [11] have considered the unsteady two-dimensio
and axisymmetric stagnation point boundary layer flows
micropolar fluids with mass transfer near a forward pla
stagnation point when the free stream velocity and w
temperature vary with time. The governing semi-sim
partial differential equations were solved numerically us
the quasilinear implicit finite-difference scheme. Thou
the stagnation point problem is a classical one and
main purpose of the present study is at least to kn
theoretically the nature of the unsteady boundary layer fl
of micropolar fluid near a stagnation point yet this type
problem may arise in the field of aeronautics and subma
navigation. Fluids containing extremely small amount
polymeric additives indicate an appreciable reduction in s
friction near a rigid body and also polymer concentrat
reduces the frictional drag, a situation which may be
interest to aeronautical engineers and naval architects
are concerned in the drag reduction of the airplane and

Studies of micropolar fluids have received considera
attention during the last few years due to their import
applications in a number of processes that occur in indu
.

Such applications include the extrusion of polymer flui
solidification of liquid crystals, cooling of a metallic pla
in a bath, animal bloods, exotic lubricants and colloidal a
suspension solutions, for example, for which the class
Navier–Stokes theory is inadequate. Eringen [12–14]
the first to propose the theory of micropolar fluids in wh
the microscopic effects arising from the local structure
micromotions of the fluid elements are taken into acco
and much work has been done since then on these fluid

2. Basic equations

We shall consider the development of the two-dim
sional boundary layer flow of a viscous and incompress
micropolar fluid near the rear stagnation point of an infin
plane wall. The fluid, which occupies a semi-infinite dom
bounded by an infinite plane and remains in rest for t
t < 0, starts to move impulsively away from the wall
t = 0. In our analysis, rectangular Cartesian coordina
(x, y) are used, in whichx and y are considered as th
coordinates along the wall and normal to it, respectively.
boundary layer equations governing the unsteady flow
micropolar fluid with constant physical properties are (
Rees and Bassom [15]),

∂u

∂x
+ ∂v

∂y
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+
(
µ+ κ

ρ

)
∂2u

∂y2
+ κ

ρ

∂N

∂y
(2)

ρj

(
∂N

∂t
+ u

∂N

∂x
+ v

∂N

∂y

)
= −κ

(
2N + ∂u

∂y

)
+ γ

∂2N

∂y2 (3)

∂j + u
∂j + v

∂j = 0 (4)

∂t ∂x ∂y
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whereu andv are the velocity components alongx andy
axes,N is the component of the microrotation vector norm
to thex–y plane,ρ is the density,µ is the absolute viscosity
κ is the vortex viscosity,γ is the spin-gradient viscosity,j is
the microinertia density, andue(x) is the free stream velocit
given by

ue(x)= ax (5)

with a (< 0) being a constant. We follow the work of man
recent authors by assuming thatγ is given by (see Rees an
Pop [16]),

γ = (µ+ κ/2)j (6)

and thatj is a constant and therefore it shall be set equa
a reference value,j0 (say); consequently Eq. (4) is triviall
satisfied.

The remaining three equations are to be solved subje
the boundary and initial conditions:

t < 0: u(t, x, y)= 0, v(t, x, y)= 0

N(t, x, y)= 0 (7a)

t = 0: u(t, x,∞)= ue(t, x), N(t, x,∞)= 0 (7b)

t > 0: u= v = 0, N = −n∂u
∂y

aty = 0 (7c)

u→ ue(x), N → 0 asy → ∞ (7d)

where n is a constant and 0� n � 1. The casen = 0,
which indicatesN = 0 at the wall, represents concentra
particle flows in which the microelements close to
wall surface are unable to rotate (Jena and Mathur [1
This case is also known as the strong concentration
microelements (see Guram and Smith [18]). The c
n = 1/2 indicates the vanishing of anti-symmetric part
the stress tensor and denotes weak concentration (Ah
[19]) of microelements. The casen = 1, as suggested b
Peddieson [20], is used for the modelling of turbul
boundary layer flows. We shall consider here both the c
n = 0 and n = 1/2, respectively. It can, however, eas
be shown that forn = 1/2 the governing equations can
reduced to the classical problem of unsteady boundary l
flow of a viscous and incompressible fluid (Newtonian flu
near the rear stagnation point of a plane wall.

The above equations do not admit similarity solutio
and numerical or perturbation methods are needed.
shall, however, use here a numerical method with
initial conditions obtained from an analytical solution. T
procedure depends on defining a non-dimensional str
functionf , a non-dimensional microrotation functiong and
a pseudo-similarity variableη given by

ψ = 2
√
νt axf (t, η), N = ax

2
√
νt
g(t, η)

η= y

2
√
νt
, τ = 2

√|a|t
(8)

The outcome of this transformation is that Eqs. (1)–
become
i

(1+K)
∂3f

∂η3
+ 2η

∂2f

∂η2
− 2τ

∂2f

∂τ∂η

+K
∂g

∂η
− τ2

{
1−

(
∂f

∂η

)2

+ f
∂2f

∂η2

}
= 0 (9)

(
1+ K

2

)
∂2g

∂η2
+ 2η

∂g

∂η
+ 2g− 2τ

∂g

∂τ

− τ2
{
f
∂g

∂η
− g

∂f

∂η
−K

(
2g+ ∂2f

∂η2

)}
= 0 (10)

and the boundary conditions (7) transform to

f = ∂f

∂η
= 0, g = −n∂

2f

∂η2 onη= 0 (11a)

∂f

∂η
→ 1, g → 0 asη→ ∞ (11b)

whereK = κ/µ is called material parameter.
The physical quantity of practical importance in th

problem is the local skin friction coefficientCf , which is
defined as

Cf = τw

ρx
√
ν|a|3 (12)

whereτw is the wall skin friction given by

τw =
[
(µ+ κ)

∂u

∂y
+ κN

]
y=0

(13)

Using variables (8) and the boundary condition (11a) fog,
we get

Cf = 1

τ

(
1+ (1− n)K

)(∂2f

∂η2

)
η=0

(14)

The initial velocity and microrotation profilesf ′(η) and
g(η) at t = 0 are obtained from the following ordinar
differential equations

(1+K)f ′′′ + 2ηf ′′ +Kg′ = 0 (15)(
1+ K

2

)
g′′ + 2ηg′ + 2g = 0 (16)

subject to the boundary conditions

f (0)= f ′(0)= 0, g(0)= −nf ′′(0) (17a)

f ′ → 1, g → 0 asη→ ∞ (17b)

where primes denote differentiation with respect toη. These
equations have the following closed form analytical solut

f ′(η)= 1− erfc

(
η

(1+K)1/2

)

+ 2n

(
2+K

2+ 2K

)1/2

×
[
1− 2n+ 2n

(
2+K

2+ 2K

)1/2]−1

×
{

erfc

(
η

(1+K)1/2

)
− erfc

[(
2

2+K

)1/2

η

]}

(18)
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g(η)= − 2n√
π
(1+K)−1/2

[
1− 2n+ 2n

(
2+K

2+ 2K

)1/2]−1

× exp

(
− 2η2

2+K

)
(19)

Further, we notice that forn = 1/2 (weak concentration
of microelements), we can take

g = −1

2

∂2f

∂η2
(20)

and equations (9) and (10) reduce to the following equat(
1+ K

2

)
∂3f

∂η3
+ 2η

∂2f

∂η2
− 2τ

∂2f

∂τ∂η

− τ2
{

1−
(
∂f

∂η

)2

+ f
∂2f

∂η2

}
= 0 (21)

subject to the boundary conditions

f = ∂f

∂η
= 0 onη= 0 (22a)

∂f

∂η
→ 1 asη→ ∞ (22b)

If we introduce now the variables

f =
(

1+ K

2

)1/2

f̂
(
τ, η̂

)
, η̂=

(
1+ K

2

)−1/2

η (23)

then Eq. (21) becomes

∂3f̂

∂η̂3
+ 2η̂

∂2f̂

∂η̂2
− 2τ

∂2f̂

∂τ∂η̂

− τ2
{

1−
(
∂f̂

∂η̂

)2

+ f̂
∂2f̂

∂η̂2

}
= 0 (24)

subject to the boundary conditions (22) forf̂ . Now, the skin
friction coefficientCf given by (14) becomes

Cf = 1

τ

(
1+ K

2

)1/2(
∂2f̂

∂η̂2

)
η=0

(25)

3. Results and discussion

Eqs. (9) and (10) subject to the boundary conditions (
with n = 0 (strong concentration of microelements) a
n= 1/2 (weak concentration of microelements) were sol
numerically using an implicit finite-difference method th
is known as the Keller-box method in conjunction with t
Newton’s linearization technique as described by Ceb
and Bradshaw [21]. Here, we use the step sizes inτ and
η of 0.02,η∞ = 10 and the convergent criteria is 5× 10−7.
The numerical solution starts at the non-dimensional ti
τ = 0 with initial profiles as given by Eqs. (18), (19) an
then proceed to larger value ofτ until the boundary laye
separation occurs. Representative results for the skin
tion coefficient, velocity and microrotation profiles, as w
as for the non-dimensional time elapsed before separa
Table 1
The non-dimensional time−(at) elapsed before separation takes place
n= 0 (strong concentration of microelements)

K −(at)
0.0 0.643793(Present result)

0.6439(Katagiri [9])
0.643(Hayasi [23])

0.5 0.669430
1.0 0.794283
1.1 0.875479
1.2 ∞

occurs have been obtained for the following values of
material parameterK = 0.0 (Newtonian fluid), 0.5, 1.0, 1.1
1.5, 2.0, 2.5 and 3.0 with the boundary conditions for
crorotationn = 0 andn = 1/2, respectively. Values of th
non-dimensional time−(at) elapsed before separation o
curs are given in Table 1 for the case ofn= 0 (strong con-
centration of microelements). The values obtained by K
giri [9] by using the difference-differential method as pr
posed by Hartree and Womersley [22], and by Hayasi [
based on the semi-similar solution method for a Newton
fluid (K = 0) are also included in this table. We can see t
the agreement between the present results and those of
giri [9] and Hayasi [23] are very good. In the differenc
differential method, the non-linear partial differential equ
tions (9) and (10) subject to the boundary conditions (11)
approximated to a system of ordinary differential equati
by replacing the partial derivatives with respect to timeτ by
finite differences, for examples, by using Gregory–New
backward difference with a uniform step sizeh. However,
we have solved these equations directly using the Keller-
implicit finite-difference scheme. Finally, one can see fr
Table 1 that the non-dimensional time elapsed before
aration takes place is higher for a micropolar fluid (K 
= 0)
than for a Newtonian fluid (K = 0). This happens because
the casen= 0 (strong concentration of microelements), t
microelements close to the wall surface are unable to ro

The variation of the skin friction coefficientCf with
−(at) is shown for some values of the parameterK in Fig. 1
for n = 0 (strong concentration of microelements) and
Fig. 2 for n = 1/2 (weak concentration of microelement
respectively. It is seen that the separation of the boun
layer occurs with negative values of the skin friction ir
spective of the type of boundary condition assumed for
crorotation,n = 0 or n= 1/2. For the case of a strong co
centration of microelements (n = 0), the separation take
place near the value−(at)= 0.6438 for a Newtonian fluid
(K = 0) and it is delayed whenK increases from zero up t
K � 1.1 as can be seen from Fig. 1. However, forK > 1.2,
the numerical results suggest that separation does not b
and it is completely inhibited. It is worth mentioning that it
difficult to obtain an exact value ofK for which the separa
tion does not occur because the non-dimensional time be
separation occurs becomes infinitely large asK approaches
a critical valueKc in the range 1.1<Kc < 1.2. For the case
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Fig. 1. The skin friction coefficient for various values ofK when n = 0
(strong concentration of microelements).

Fig. 2. The skin friction coefficient for various values ofK whenn = 1/2
(weak concentration of microelements).

of weak concentration (n = 1/2), on the other hand, Fig.
shows that the separation occurs for any value ofK and it
takes place again near the value−(at) = 0.6438. This can
be also easily seen if we examine both Eqs. (24) and (
Further, we notice, as expected, that the skin friction co
cient for the micropolar fluid is higher than that for the Ne
tonian fluid (K = 0) irrespective of the boundary conditio
assumed for microrotation.

The velocity and microrotation profiles as a function
time −(at) are shown in Figs. 3–8 forn = 0 (strong con-
centration of microelements) andn= 1/2 (weak concentra
tion of microelements), and some values of the parameteK.
The variabley

√|a|/ν = τη in place ofη has been used
We can see that these profiles develop rapidly from res
−(at) increases from zero until the boundary layer sep
tion takes place. However, it is important to notice that
transition from the unsteady initial flow up to the positi
where boundary layer start to separate is completely sm
Fig. 3. The velocity profiles for the rear stagnation point whenK = 0.5.

Fig. 4. The velocity profiles for the rear stagnation point whenK = 1.0.

for all values ofK,n and−(at) considered. As the values o
the material parameterK increase, the boundary layer thic
ness also increases. However, for the same value of the
meterK, the thickness of the microrotation boundary lay
is larger than the thickness of the velocity boundary la
But for the same values ofK, the velocity profiles are highe
for n= 1/2 than forn= 0 as can be seen from Figs. 3 and
Further, it should be mentioned that for the present p
lem, i.e., the unsteady flow near the rear stagnation p
the microrotation profiles shown in Figs. 5 and 7 are co
pletely positive forn= 0, i.e., the rotation of the microele
ments is direct, they reach a maximum and then decrea
zero. However, the microrotation profiles shown in Figs
and 8 forn= 1/2 are completely negative, which means t
the rotation of the microelements is indirect. Both these p
files initially decrease from maximum values at the wall
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Fig. 5. The microrotation profiles for the rear stagnation point w
K = 0.5 andn= 0 (strong concentration of microelements).

Fig. 6. The microrotation profiles for the rear stagnation point w
K = 0.5 andn= 1/2 (weak concentration of microelements).

zero and then change the form reaching maximum value
side the boundary layer and decrease to zero. This case
not happen for the unsteady flow near the forward stag
tion point of a plane surface, see Lok et al. [24]. Furth
both Figs. 6 and 8 show that near the separation poin
microrotation at the wall is zero.

4. Conclusions

The Keller-box method has been very successfully u
here for the unsteady boundary layer flow of a micropo
fluid near the rear stagnation point of an infinite plane w
It has been shown that the obtained results agree very
with the previous studies for a Newtonian fluid(K = 0)
s

l

Fig. 7. The microrotation profiles for the rear stagnation point w
K = 1.0 andn= 0 (strong concentration of microelements).

Fig. 8. The microrotation profiles for the rear stagnation point w
K = 1.0 andn= 1/2 (weak concentration of microelements).

reported by Katagiri [9] and Hayasi [23]. An importa
result of the present paper is that for the case of str
interaction (n = 0), the boundary layer separates from
wall when the material parameterK lies in the range 0�
K < 1.2 and this separation delays asK increases. But fo
a micropolar fluid withK � 1.2 the boundary layer doe
not separate at all. However, forn= 1/2 the boundary-laye
separation takes place for all values ofK. From the analysis
we infer that the presence of microelements thoroug
influences the characteristics features on this unsteady
It is worth mentioning that similar behaviours were fou
also by Katagiri [9,25] for the corresponding problems
unsteady boundary layer flows of a Newtonian fluid (K = 0)
near the rear and forward stagnation points on a plane wa
the presence of a uniform applied magnetic field. The res
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obtained here may be helpful in choosing a micropolar fl
with appropriate combinations of material properties so
one could use such fluids for drag reduction purposes.
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